Eigenschaften des Speicherzustandes

- 1. Irreversibel; ROM-Charakter
- 2. Reversibel; Disketten-Charakter
- 3. Dynamisch; dRAM-Charakter

1. und 2. Verlangen physikalisch:

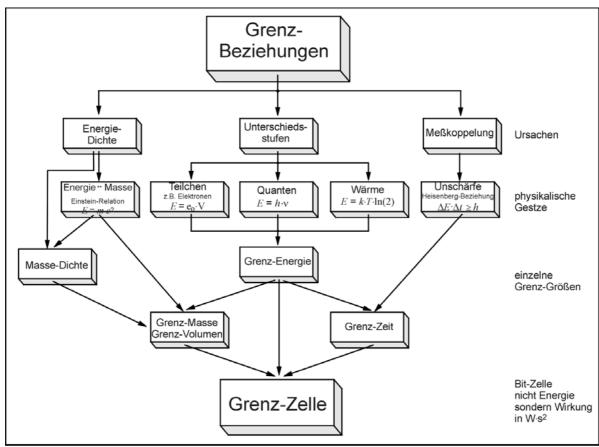
- Nichtlinearität \Leftrightarrow physikalische Irreversibilität
- Metastabilität ⇔ Energieschwelle ⇔ thermische Energie begrenzt

Energien für Speicherzustand

- **Statisch**; mechanisch (Strukturen); elektrisch (Elektret, Kondensator); Magnetisch (Dauermagnet); supraleitend (?); chemisch (Biologie)
- **Dynamisch**: fließender Strom, elektromagnetische Welle (u.a. Licht), akustisch (Oberflächenwellen); thermische Energie (?); chemisch (neuronal)

Es sind also zu unterscheiden:

- 1. Funktionell notwendige Energie
- 2. Zusatzenergie bei dynamischen Speicher


Grenzen der Speicherung

Physikalisch

- Energiedichte des Speichermediums (klassisch 0,5 J/cm³)
- Energiekonzentration: bei Aufzeichnung (optisch ⇒ Beugungsvolumen)
- Meßgrenze, bei der Wiedergabe, letztlich Heisenberg-Unschärfe

Technisch

- Redundanzen ⇒ 1 m3 maximal etwa möglich
- Spurhöhe: mechanische Stabilität, Regelung, Rasen, Energie für Wiedergabe
- Archivvolumen: Verhältnis Oberfläche zu Volumen, ⇒ Bandform bzw. Holographie u. ähnlich
- Speicherdichte: unterscheiden: linear ⇒ Oberfläche ⇒ Volumen sowie Wirkungsgrad der Wiedergabewandler
- Zugriff: Lichtgeschwindigkeit; Masse-Beschleunigung

elemzell.cdr h. völz 2.1.94

Grenzbeziehungen

atomar: Heisenberg-Unschärfe

$$\Delta t \cdot \Delta E \ge h/2$$

Es sind keine genaueren Messungen möglich. Das gilt für alle konjugierten Koordinaten. Für ein **Photon** / Lichtquant gilt:

$$\Delta E = h \cdot v$$
.

Damit folgt für v = f die **Küpfmüller**beziehung:

$$\Delta t \cdot \Delta f \ge 1/2$$
.

Sie gibt die Samples/s an, die mindestens für eine "fehlerfreie" Rekonstruktion erforderlich sind. Sie ist auch als **Nyquistrate** bekannt. Für die Shannon-Information gilt die **Entropie**:

$$H = -\sum_{v=1}^{n} p_v \cdot \log_2(p_v)$$
 und die **Kanalkapazität** $C \le H \cdot \Delta f$

Thermodynamik: Carnot'scher Kreisprozeß

$$\eta \leq \frac{T_{verbr.} - T_{Umwelt}}{T_{Umwelt}}$$

Grenzkh.doc 18.9.96 Folien/97

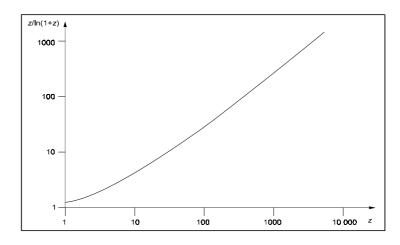
Energie je Bit

Nach Shannon gilt für die Kanalkapazität $C = B \bullet ld(\frac{P_n + P_s}{P_n})$

Darin bedeuten: B Bandbreite des Kanals; P_S Leistung des Signals; P_n Leistung des Störungen (noise), bei rein thermischen Rauschen $P_n = k \cdot B \cdot T$.

Darin bedeuten: k die Boltzmannkonstante mit 1,381·10⁻²³ J/K; T die absolute Temperatur Die Signalleistung sei das z-fache der Störleistung $P_s = z \cdot P_n$

Dann gilt $C = B \cdot ld(1+z)$


Für das Verkältnis von Signalleistung zur Kanalkapazität gilt deshalb $\frac{P_s}{C} = k \cdot T \cdot \frac{z}{ld(1+z)}$ in $\frac{J}{Bit}$ bzw. $\frac{W}{Bit/s}$

Der Ausdruck von z kann nun in eine Reihe entwickelt werden: $\frac{z}{\ln(1+z)} = \frac{1}{1 - \frac{z}{2} + \frac{z^2}{3} - \frac{z^3}{4} \pm \cdots}$

Hierfür gelten die Grenzen 1 $\langle \frac{z}{\ln(1+z)} \rightarrow 1$ für $z \rightarrow 0$

Also gilt
$$E/Bit \ge k \cdot T \cdot \ln(2)$$

Bei 300 K, etwa Zimmertemperatur folgt E/Bit = $3 \cdot 10^{-21}$ J $\cong 5 \cdot 10^{11}$ Hz $\cong 5 \cdot 10^{-22}$ cal $\cong 26$ mV

Ableitung der optischen Speichergrenze

Aperturwinkel β und Brechungswinkel n ergeben numerische Apertur

$$A = n \cdot \sin(\beta)$$

Mit der Wellenlänge λ folgt Brennfleckdurchmesser

$$D = \lambda/A$$

Die Länge des Brennflecks beträgt $l = \lambda \cdot A$, folglich ist das Brennvolumen

$$V \sim \lambda^3$$

Mit der Planckschen Konstanten h und der Lichtgeschwindigkeit c beträgt die Lichtenergie eines Photons

$$E = h \cdot v = h \cdot c/\lambda$$

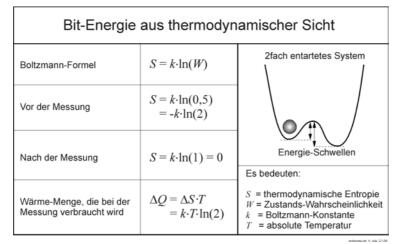
Für eine Speicherung muß die Energiedichte w im Material mindestens so groß wie die Energie eines einzelnen Photons sein:

$$w = E/V = h \cdot c \cdot \lambda^{-4}$$

So folgt für die kürzestmögliche Wellenlänge

$$\lambda_{\min} = \sqrt[4]{h \cdot c / w}$$

Diese Abmessung bestimmt sogleich das kleinstmögliche Bitvolumen zu

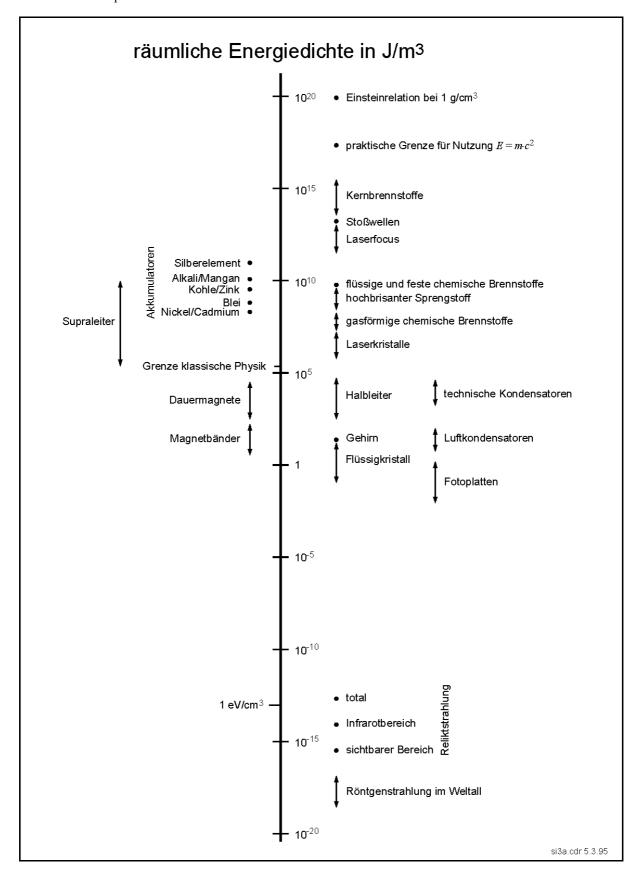

$$V_{\rm BIT} = (h \cdot c/w)^{3/4}$$

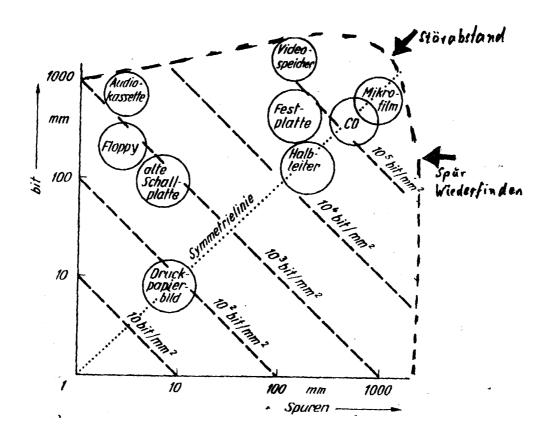
Mit der Grenze der klassischen Physik von $w = 0.5 \text{ J/cm}^3$ ergibt sich

$$\lambda_{\min} \sim 25$$
 nm, also

10¹⁶ Bit/cm³ Speicherdichte.

Für ein Medium von 1 m³ folgt die Obergrenze von maximal möglicher Speicherkapazität zu 10²² Bit





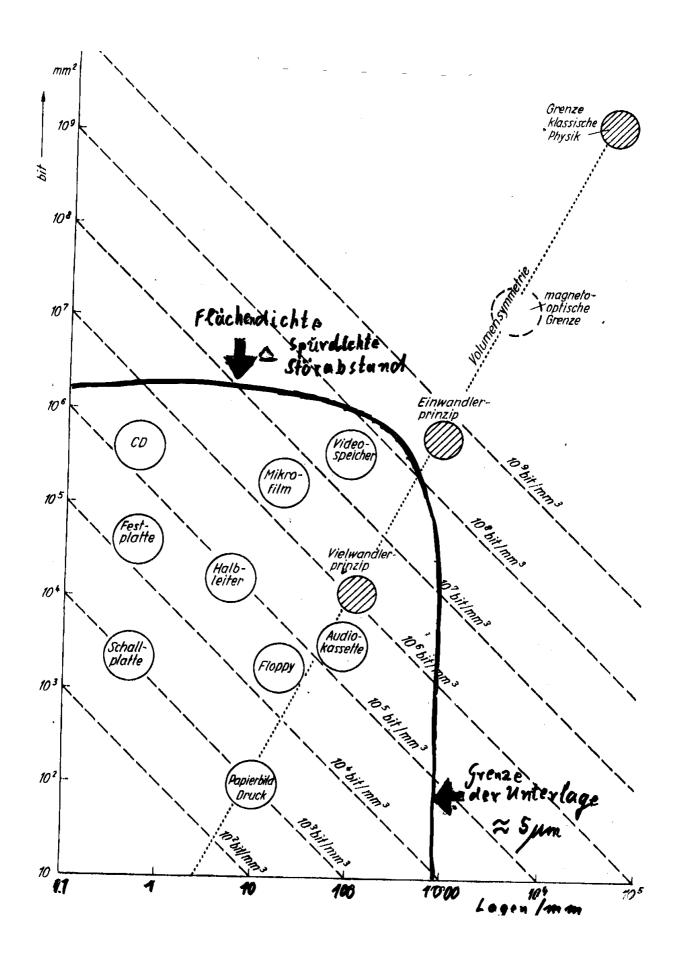
Speicherdichten

- Letztlich müssen Speichermedien archiviert werden, d. h. sie sind im Raum unterzubringen. Folglich ist die räumliche Speicherdichte wesentlich. Sie wird jedoch so gut wie nie angegeben. Folgende Größen ergeben sich aus technischen Gesichtspunkten
- Lineare Speicherdichte in einer Spur. Sie wird in Bit/mm oder bpi (bit per inch) angegeben. Sie läßt sich besonders groß machen
- Spurdichte als Mittenabstand zwischen benachbarten Spuren. Sie wird in Spuren/mm oder tpi (tracks per inch) angeben. Sie wird wesentlich durch die Präzision der Spurführung bestimmt. Dafür wurde im Laufe der Zeit vielfältige Techniken geschaffen

• Flächenspeicherdichte gilt für Oberflächen. Praktische alle heutigen Verfahren speichern nur an Oberflächen. Sie ist Produkt der beiden obigen Speichedichten. Nur in seltenen Fällen sind beide Richtungen gleich dicht. Aus technischen Gründen ist die "Dicke" des Mediums meist sehr viel größer als die anderen Speicherdichten

Verfahren	Grenze	Erreicht
Halbleiter	10 ¹⁸ Bit	10 ¹⁴ Bit
Magnetverfahren	10 ¹⁹ Bit	10 ¹⁶ Bit
Optische Methoden	10 ²² Bit	10 ¹⁵ Bit

Volumen-Redundanzen


Wir unterscheiden grob 4 technische Größenklassen (ausgenommen sei der Maschinenbau)

Klasse	Baulement	Handgerät	Standgerät	Gebäude
Beispiele	Widerstand,	Lupe, Taschen-	Bett, Schrank, Rech-	Haus, Fabrik
	Transistor, Chip	rechner, Handy,	ner, Kühlschrank,	
ca. Volumen	cm ³	dm^3	m^3	$10^5 \mathrm{m}^3$

In jeder Klasse und zwischen den Klassen sind immer Volumen-Redunzen erforderlich

Beschreibung	Verhältnis
Bauelement muß für Handhabung und zum Schutz gekapselt werden	10:1 bis 1000:1
Im Handgerät sind Freiräume beim Bau und z.T. funktionell (u.a. Wärme) erforderlich	ca. 100:1
Standgerät: Leiterplattenaufbau, Lücken zwischen den Bauelemente und Leiterplatten	
notwendig, Netzteil, Wärmeabfuhr, mechanische Stabilität, Verdrahtung usw.	um 10000:1
Gebäude, Raum zwischen den Standgeräten, Rückverdrahtungen, Reparaturzugang,	
Kabelverlegungen, Klimaanlagen usw. Max. etwa 10 ⁴ Geräte in sehr großem Haus	um 10000:1

Als Konsequenz ergibt sich, daß der Menschheit maximal $1 \, m^3$ Material (echtes Speichervolumen) zur Verfügung stehen werden.

Energie-Direkt-Umwandlungen

üblich seit ??, entnommen aus Funktechnik 19/67; 373

	Mechanisch	Thermisch	Licht	elektrisch	chemisch
mechanisch	einfache	Reibungswärme,	Tribu-	Dynamo-machine,	
	Maschinen	Wärmepumpe,	lumineszenz	Mikrophon	
		Kältemaschine			
thermisch	Wärmekraft-	Absorptions-	Glühlampe	MHD-Generator	endotherme
	maschine	kältemaschine		Seebeck-Effekt thermo-	chemische
				ionische Dioden	Reaktionen
Licht	Radiometer	Lichabsorption	Fuoreszenz	Speerschicht-Photozelle	Photosynthese,
					Photodisso-
					ziation
elektrisch	Elektromotor,	Peltier-Effekt,	Spektrallampe,	Speicherung in Akku	Elektrolyse,
	Elektro-Osmose	Thomson-Effekt	Leuchtstoff-	oder Pumpen-Speicher-	Elktrodialyse
	MHD-Pumpe		röhren	werk	
chemisch	Osmose,	exotherme chemi-	Chemie-	galvanische und spez.	Präreaktion in
	Muskel	sche Reaktion,	Lumineszenz,	Brennstoff-Elemente	Brennstoff-
		spez. Verbrennung	(Leuchtkäfer)		Elementen

WandlungsMtrizen.doc h. völz 1.5.99

Anregungs- und Emissionsprozesse aus Analysentechnik

Zeilen = Anregung; Spalten = Emission

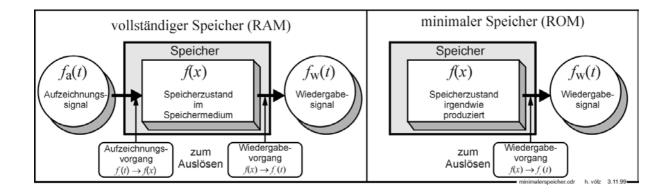
	hv	E	i	N
hv Photonen	Reflexion,	Photo- und Auger-	Photodesorption von	Photodesorption von
	Fuoreszenz	Elektronen	Ionen	Neutralteilchen
e Elektronen	durch Elektronen	Sekundärelektronen;	durch Elektronen	durch Elektronen
	induzierte	reflektierte und	induzierte	induzierte Desorption
	Emission	Augereffekt	Ionendesorption	von Neutralteichen
i Ionen	durch Ionen	durch Ionen induzierte	Sekundär-Ionen-	Kathodenzerstäubung
	induzierte	Elektronen-Emission	Emission, Reflexion	
	Emission	(Kathodenfall)		
N neutrale	durch Netralteil-	durch Neutralteilchen	durch Neutralteilchen	Kathodenzerstäubung
Teilchen	chen induzierte	induzierte	induzierte Ionenemission	
	Emission	Elektronenemission		
kT thermisch	thermische	Thermische	thermische	thermisches
	Strahlung	Elektronenemission	Ionendesorption	Verdampfen
E Feld		Feldelektronenemission	Feldionenemission	
Mechanisch	_	Exoelektronenemission		Ultraschall-desorption

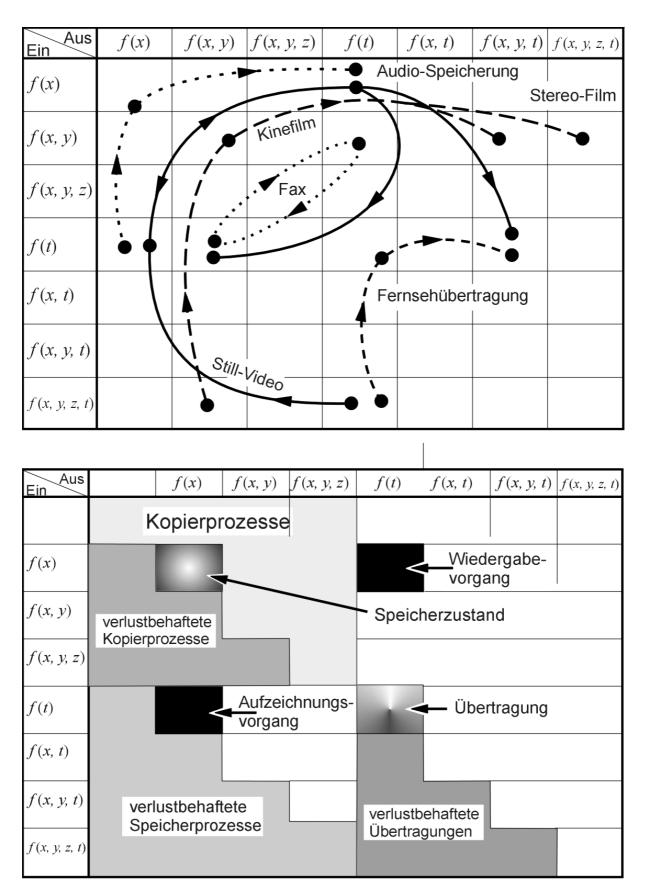
WandlungsMtrizen.doc h. völz 1.5.99

Arten der Speicherung Was wird gespeichert?

- 1. Statische Fakten/Daten wie: Adressen, Telefonnummern, Meßwerte, Texte
- 2. Zeitpunkte aus (dynamischen) Abläufen, wie Fotografie, Signalabtastung.
- 3. Zeitabläufe wie Schall- und Videoaufzeichnung

8 Existenzformen von Information


ohne	koordinatenfrei	direkte, fixe Werte, u.a. Zahlen
f(x)	eine Ortskoordinate	z.B. Werte längs eines Weges, u.a. Auslenkung in der Schallrille
f(x,y)	zwei Ortskoordinaten	z.B. Werte auf einer Fläche, u.a. Pixelbild
f(x,y,z)	drei Ortskoordinaten	z.B. Werte im Volumen, u.a. elektrische Feldstärke im Raum
f(t)	eine Zeitkoordinate	z.B. Meßwerte während eines Tages, Monats usw. u.a.
		Temperaturkurve
f(x,t)	je eine Zeit- und Ortskoordinate	z.B. Verkehrsbelastung einer Straße oder Strömungs-
		geschwindigkeit in einem Rohr
f(x,y,t)	zwei Orts- und eine Zeitkoordinate	z.B. Fernsehbild oder Oberflächenwellen
f(x,y,z,t)	drei Orts- und eine Zeitkoordinate	z B. Theateraufführung oder Schallfeld in einem Raum


Folien\97\systeme2.doc

Jahr	Techniken	Abstand Jahre
1450	Buchdruck	
1830	Photographie	380
1900	Lochkarte, Schallplatte	70
1950	elektronische Medien	50
1985	optoelektronische Medien	35
2010	???	25

Aus Ein	ohne	f(x)	f(x, y)	f(x, y, z)	f(t)	f(x, t)	f(x, y, t)	f(x, y, z, t)
ohne	Formel	Daten- speicherung	Symbole, Ziffern, Buchstaben		Daten- übertragung			
f(x)	Ablesen eines Zeiger- instruments	Daten kopieren	Histogramm		Wiedergabe von CD oder Schallplatte		Wiedergabe einer Video- aufzeichnung	Theater- aufführung
f(x, y)	Zeichen- erkennung		Photokopie, Buchdruck	Hologramm-, Stereobild- wiedergabe	Bildabtastung, Scannen		klassischer Kinefilm	Bau eines Gerätes oder Gebäudes nach Zeichnungen
f(x, y, z)			Photographie, Landkarte, Hologramm, Stereobild	Holographie				
f(t)	Signal- abtastung	Signal- speicherung	Oszillogramm, Sonogramm		Signal- übertragung		Fernseh- Wiedergabe	
f(x, t)			Weg-Zeit- Diagramm					
f(x, y, t)		Video- Aufzeichnung	klassische Film- Aufnahme		Filmabtastung			
f(x, y, z, t)		Roman	Schnappschuß bei Photo		mündlicher Bericht, Videosignal		Fernseh- übertragung	echter Stereofilm

spmatrix.cdr h. võlz 29.12.93

Benötigte Datenvolumen (leicht gerundet)

Denning, u.a.: beyound calculation. copernicus 1997

Datentyp	Byte/s	je Stunde	je Tag	lebenslang
Gelesener Text, wenig Bilder	50	0,2 MByte	5 MByte	200 GByte
Sprache 120 Worte/min	12	0,05 MByte	0,5 MByte	20 GByte
Komprimierte Sprache	1000	4 MByte	40 MByte	1,5 Tbyte
Komprimiertes Video	500000	2 GByte	20 GByte	1PByte

Tabellen.doc Texte\texte\89

Verfügbare Speicherkapazität

mehrere Abschätzungen zeigen für kurz nach 2000:

Es steht uns soviel Speicherkapazität zur Verfügung,

daß **alle** elektronisch erfaßbaren menschlichen Aktivitäten, also z.B. Telefon, Fax, Rundfunk, Fernsehen **vollständig speicherbar** wären

Hinweise darauf schon vorhanden:

krisenhafter Verfall der Preise für RAM und Festplatten

Das erzwingt offenbar

eine neue Qualität im Umgang mit Information

könnte betreffen

- > was Speichern und wie Auffinden? (Organisation)
- Inhalt | Bedeutung der Information (Qualität)
- heute noch Unbekanntes

Es betrifft aber auch die Kompression

sie verliert bezüglich Speichern an Wichtigkeit

Wirkungsgrad der Wandler.

Magnetisch 50 bis 90 % Optisch ca. 30 % Magneto-optisch ca. 0,1 %

Für die Speicherdichte gilt allgemein

Aufzeichnung > Speicherzustand > Wiedergabe

0 10^{20} bit/cm³ 10^{13} , 10^{16} (optisch) bit/cm³

Energiedichte Meßtechnik

Verfügbare Speicherkapazität

mehrere Abschätzungen zeigen für kurz nach 2000:

Es steht uns soviel Speicherkapazität zur Verfügung,

daß alle elektronisch erfaßbaren menschlichen Aktivitäten, also z.B. Telefon, Fax, Rundfunk, Fernsehen

vollständig speicherbar wären

Hinweise darauf schon vorhanden:

krisenhafter Verfall der Preise für RAM und Festplatten

Das erzwingt offenbar

eine neue Qualität im Umgang mit Information

könnte betreffen

- was Speichern und wie Auffinden? (Organisation)
- ➤ Inhalt | Bedeutung der Information (Qualität)
- > heute noch Unbekanntes

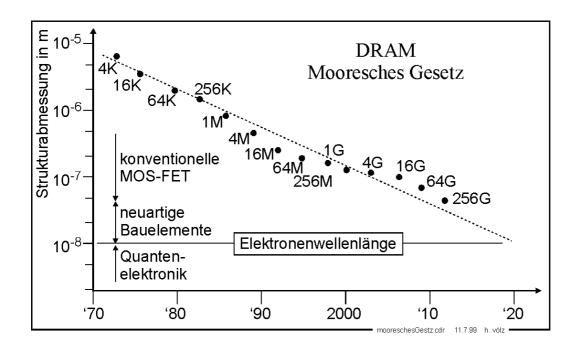
Es betrifft aber auch die Kompression, sie verliert bezüglich Speichern an Wichtigkeit

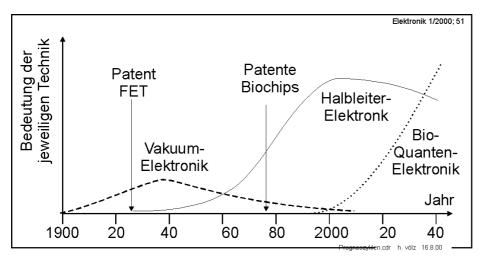
Verfügbare Speicherkapazität

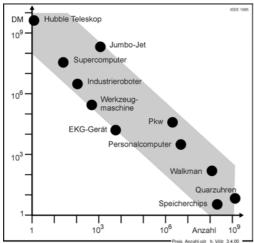
mehrere Abschätzungen zeigen für kurz nach 2000:

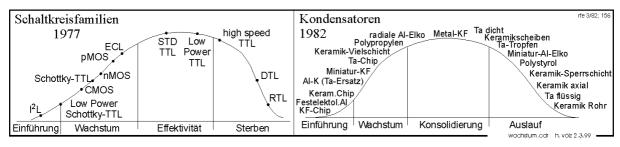
Es steht uns soviel Speicherkapazität zur Verfügung,

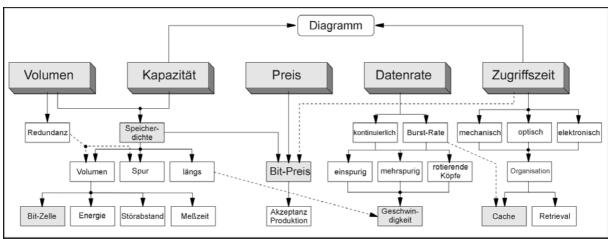
dass **alle** elektronisch erfassbaren menschlichen Aktivitäten, also z.B. Telefon, Fax, Rundfunk, Fernsehen **vollständig speicherbar** wären Hinweise darauf schon vorhanden: krisenhafter Verfall der Preise für RAM und Festplatten

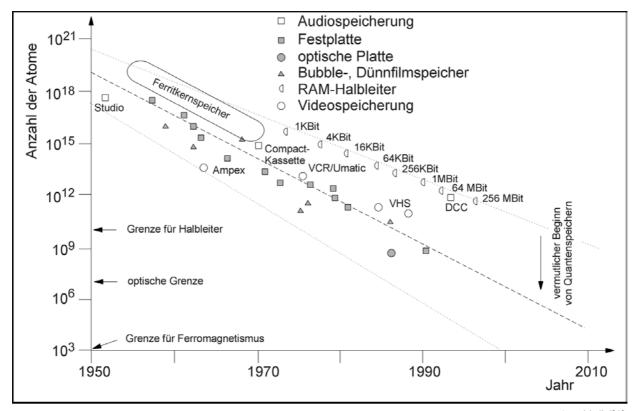

Das erzwingt offenbar

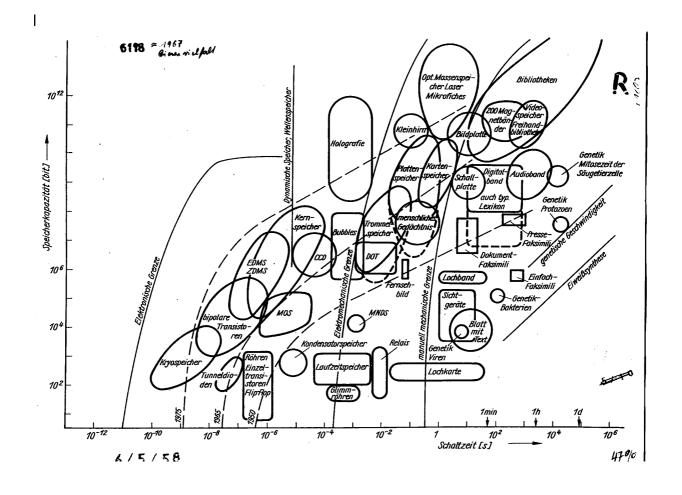

eine neue Qualität im Umgang mit Information

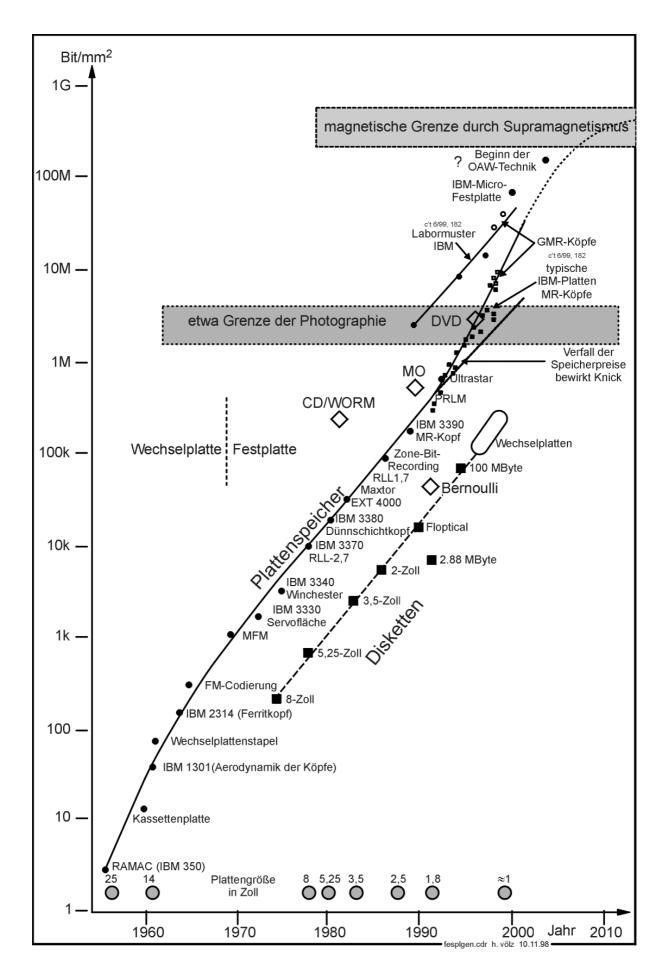

könnte betreffen

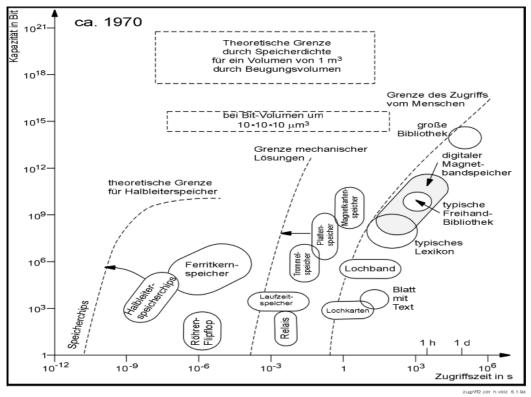

- was Speichern und wie Auffinden? (Organisation)
- Inhalt | Bedeutung der Information (Qualität)
- heute noch Unbekanntes

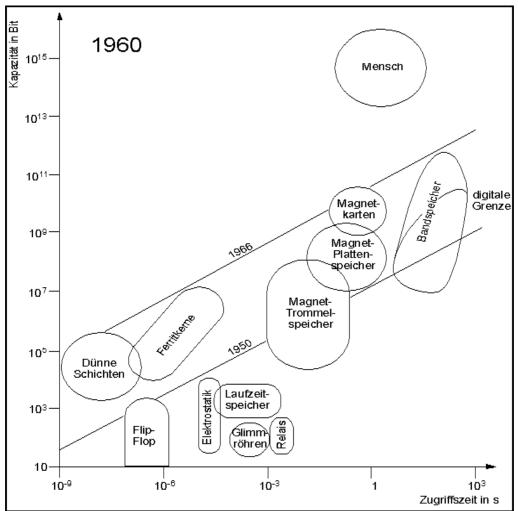

Es betrifft aber auch die Kompression, sie verliert bezüglich Speichern an Wichtigkeit



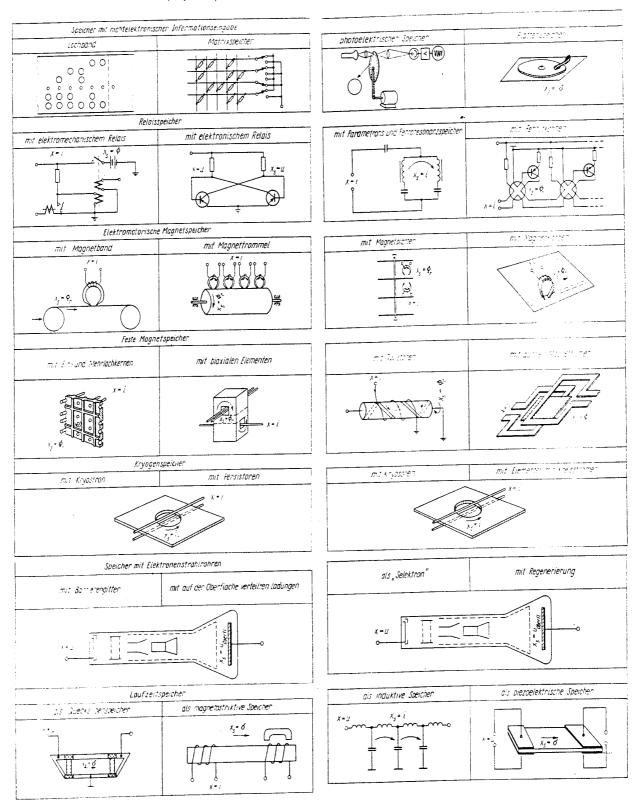


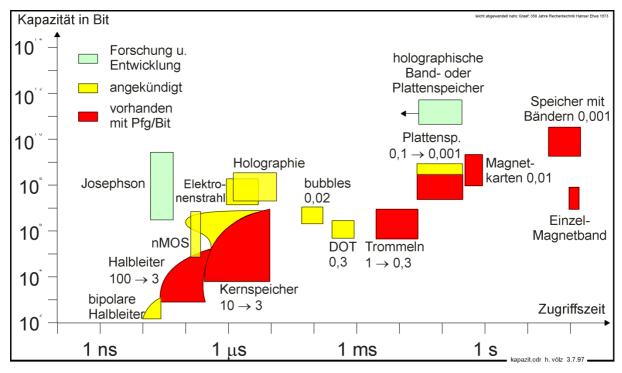


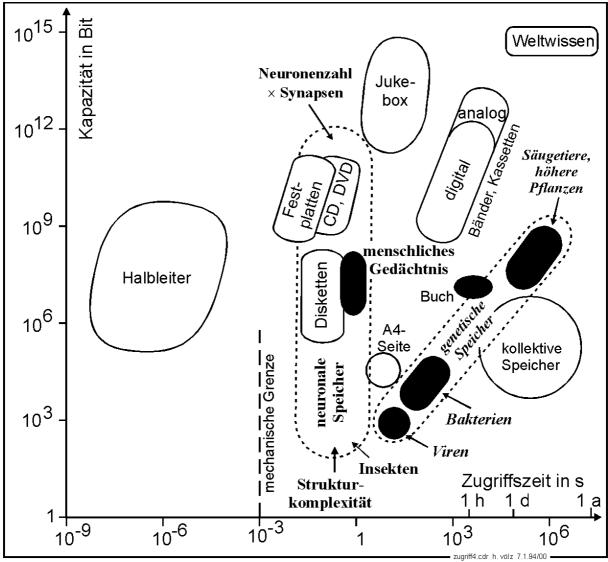

datenzus.cdr h. völz 24.6.95



atomsp.cdr h. völz 10.4.94







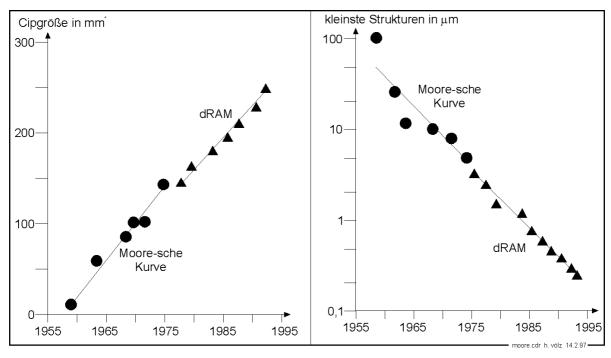
sugniffical h.vals 6.194

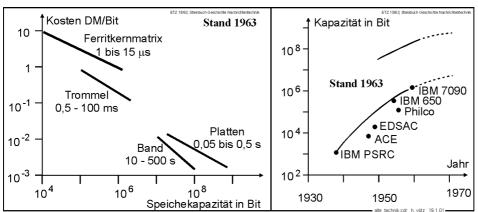
Speicherdichte.pdf h. völz 30.10.03 17/19

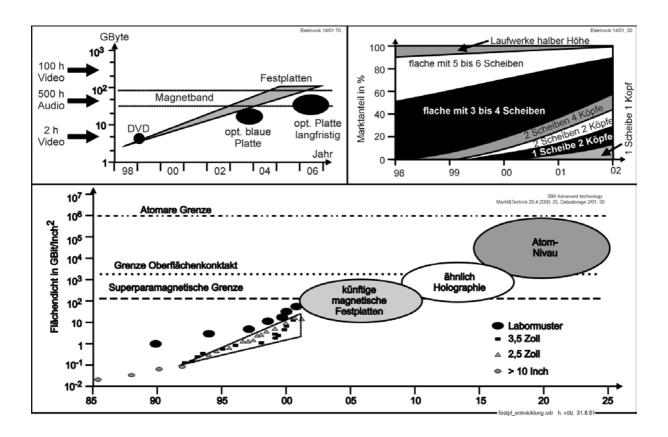
Zeit und Daten

- **Zugriffszeit**, viele Varianten, meist die gemittelte Zeit zwischen der Anforderung und dem Erhalt (einzelner) Daten, die teilweise durch einen *Cache* verkürzt erscheint
- **Datenrate**, mehrere Varianten, meist für eine lang anhaltende Übertragung in Bit/s (Burst-Rate, Streaming-Mode), die eventuell durch Zugriffszeiten verringert erscheint
- Archivierungszeit; Zeitdauer in der gespeicherte Daten sicher verfügbar bleiben, hängt ab von
- Speicherzeit des Mediums, d.h. bis es sich durch Einflüsse (Licht, Wärme, mechanisch usw.) verändert
- Verfügbarkeit der aktuellen **Technik** (moralische Veralterung, vgl. heute Lochband und 8-Zoll-Diskette))
- Updaterate, Zeitabstand in dem Daten in etwa regelmäßig aktualisiert werden

Zugriffszeit hängt ab von


- Kapazität des Speichers, meist je größer desto langsamer
- Technologie: Halbleiter (MOS, ECL ...), Festplatte, Band, ...
- Organisation, u.a. linear, matrizenhaft, hierarchisch, assoziativ, hashcode, cache


Typische Grenzwerte


Optik, Tieftemperaturphysik ps
 Elektronisch ns
 Mechanisch ms

Mensch Sekunden bis Minuten

Alte Version 22.7.90, neu: Zeit und Daten.doc 8.11.99

